Extensions 1→N→G→Q→1 with N=C22xD20 and Q=C2

Direct product G=NxQ with N=C22xD20 and Q=C2
dρLabelID
C23xD20160C2^3xD20320,1610

Semidirect products G=N:Q with N=C22xD20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xD20):1C2 = (C2xC20):5D4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):1C2320,298
(C22xD20):2C2 = D20:13D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):2C2320,359
(C22xD20):3C2 = C23:2D20φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):3C2320,587
(C22xD20):4C2 = C2xC20:4D4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):4C2320,1147
(C22xD20):5C2 = C2xC22:D20φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):5C2320,1159
(C22xD20):6C2 = C2xD10:D4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):6C2320,1161
(C22xD20):7C2 = C2xC4:D20φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):7C2320,1178
(C22xD20):8C2 = D4xD20φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):8C2320,1221
(C22xD20):9C2 = D20:23D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):9C2320,1222
(C22xD20):10C2 = C10.1202+ 1+4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):10C2320,1325
(C22xD20):11C2 = C22xD40φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):11C2320,1412
(C22xD20):12C2 = C2xC20:7D4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):12C2320,1462
(C22xD20):13C2 = D20:16D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):13C2320,663
(C22xD20):14C2 = C42:9D10φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):14C2320,1197
(C22xD20):15C2 = D20:19D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):15C2320,1281
(C22xD20):16C2 = D20:21D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):16C2320,1302
(C22xD20):17C2 = C2xC8:D10φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):17C2320,1418
(C22xD20):18C2 = C22xD4:D5φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):18C2320,1464
(C22xD20):19C2 = C2xC20:D4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):19C2320,1475
(C22xD20):20C2 = C2xD4:D10φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):20C2320,1492
(C22xD20):21C2 = C10.1462+ 1+4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):21C2320,1502
(C22xD20):22C2 = C22xD4xD5φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):22C2320,1612
(C22xD20):23C2 = C22xQ8:2D5φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20):23C2320,1616
(C22xD20):24C2 = C2xD4:8D10φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20):24C2320,1619
(C22xD20):25C2 = C22xC4oD20φ: trivial image160(C2^2xD20):25C2320,1611

Non-split extensions G=N.Q with N=C22xD20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xD20).1C2 = (C2xC4):9D20φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).1C2320,292
(C22xD20).2C2 = (C2xDic5):3D4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).2C2320,299
(C22xD20).3C2 = D20.31D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20).3C2320,358
(C22xD20).4C2 = (C2xC4):6D20φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).4C2320,566
(C22xD20).5C2 = (C2xC4):3D20φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).5C2320,618
(C22xD20).6C2 = C2xD20:5C4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).6C2320,739
(C22xD20).7C2 = C2xD10.D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20).7C2320,1082
(C22xD20).8C2 = C2xC4.D20φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).8C2320,1148
(C22xD20).9C2 = C2xD10.13D4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).9C2320,1177
(C22xD20).10C2 = C22xC40:C2φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).10C2320,1411
(C22xD20).11C2 = C2xD20:6C4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).11C2320,592
(C22xD20).12C2 = (C2xD20):22C4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).12C2320,615
(C22xD20).13C2 = C4:C4:36D10φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20).13C2320,628
(C22xD20).14C2 = D20.36D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20).14C2320,673
(C22xD20).15C2 = C2xC20.46D4φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20).15C2320,757
(C22xD20).16C2 = C23.48D20φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20).16C2320,758
(C22xD20).17C2 = C2xD20:8C4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).17C2320,1175
(C22xD20).18C2 = C42:7D10φ: C2/C1C2 ⊆ Out C22xD2080(C2^2xD20).18C2320,1193
(C22xD20).19C2 = C22xQ8:D5φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).19C2320,1479
(C22xD20).20C2 = C2xC20.23D4φ: C2/C1C2 ⊆ Out C22xD20160(C2^2xD20).20C2320,1486
(C22xD20).21C2 = C2xC4xD20φ: trivial image160(C2^2xD20).21C2320,1145

׿
x
:
Z
F
o
wr
Q
<